This is a set of five disersal kernel commonly used to model seeds dispersal.

kernels()

kern_gaussian(dist, scal)

kern_exponential(dist, scal)

kern_exponential_power(dist, scal, shap)

kern_2Dt(dist, scal, shap)

kern_lognormal(dist, scal, shap)

meanDispDist_gaussian(dist, scal)

meanDispDist_exponential(dist, scal)

meanDispDist_exponential_power(dist, scal, shap)

meanDispDist_2Dt(dist, scal, shap)

meanDispDist_lognormal(dist, scal, shap)

Arguments

dist

a real positive number giving the dispersal distance.

scal

a real positive number giving the scale parameter of the kernel.

shap

a real positive number giving the shape parameter of the kernel.

Value

The pdf values at distance dist.

Functions

  • kern_gaussian: Exponential kernel.

  • kern_exponential: Exponential kernel.

  • kern_exponential_power: Dispersal kernels from the exponential-power family.

  • kern_2Dt: 2Dt kernel.

  • kern_lognormal: Lognormal kernel.

  • meanDispDist_gaussian: Exponential kernel.

  • meanDispDist_exponential: Exponential kernel.

  • meanDispDist_exponential_power: Dispersal kernels from the exponential-power family.

  • meanDispDist_2Dt: 2Dt kernel.

  • meanDispDist_lognormal: Lognormal kernel.

References

Nathan, R., Klein, E., Robledo-Arnuncio, J.J. and Revilla, E. (2012) Dipsersal Kernels: Review in Dispersal Ecology and Evolution. Oxford University Press.

Examples

seqx <- seq(0,10,0.01) plot(seqx, kern_lognormal(seqx,3,.2), type='l')