Skip to contents

Compute the co-occurrence between all pairs of species and descriptive metrics of the co-occurrence network.

Usage

ec_cooc_count_pair(x)

ec_cooc_count_triplet(x)

ec_checkerboard(x)

Arguments

x

a pa object or an R object to a coerced to one (see ec_as_pa()).

Details

Currently bi tests the presence of a significant value of occurrence assuming species occurrence are independent binomial distribution. by takes the limited number of sites into account by using an hypergeometric distribution (see Veech 2013). Note that if the number of sites is large and the occurrence of both species relatively low, then bi and hy give very similar results.

Functions

  • ec_cooc_count_pair(): A matrix with all pairs of species and the corresponding co-occurrence counts.

  • ec_cooc_count_triplet(): A matrix with all triplets of species and the corresponding co-occurrence counts.

  • ec_checkerboard(): Compute the checkerboard score and return a list of three elements:

    • units which incudes checkerboard units and t

    • c_score checkerboard scores.

    • c_score_s2 the S2 statistics in Roberts & Stone (1990).

References

  • Veech, J. A. (2013). A probabilistic model for analysing species co-occurrence: Probabilistic model. Global Ecology and Biogeography, 22(2), 252–260.

  • Arita, H. T. (2016). Species co-occurrence analysis: Pairwise versus matrix-level approaches: Correspondence. Global Ecology and Biogeography, 25(11), 1397–1400.

  • Stone, L., & Roberts, A. (1990). The checkerboard score and species distributions. Oecologia, 85(1), 74–79. https://doi.org/10.1007/BF00317345

  • Roberts, A., & Stone, L. (1990). Island-sharing by archipelago species. Oecologia, 83(4), 560–567. https://doi.org/10.1007/BF00317210

Examples

mat <- ec_generate_pa(1000, 6, .2)
#> ! Empty site(s): 6, 11, 16, 20, 24, 25, 26, 33, 34, 35, 36, 38, 39, 44, 54, 81, 83, 85, 87, 89, 97, 100, 103, 104, 107, 117, 119, 121, 122, 133, 140, 141, 150, 152, 153, 156, 160, 161, 163, 164, 165, 167, 169, 174, 177, 179, 180, 193, 203, 205, 206, 208, 222, 228, 230, 235, 237, 240, 247, 249, 252, 254, 266, 267, 272, 286, 287, 288, 291, 297, 298, 300, 302, 303, 308, 318, 322, 324, 331, 333, 340, 342, 343, 349, 350, 352, 358, 360, 368, 369, 374, 384, 385, 386, 389, 390, 392, 393, 398, 404, 406, 410, 416, 418, 419, 426, 427, 432, 434, 435, 438, 439, 440, 445, 446, 447, 452, 454, 462, 464, 470, 473, 474, 475, 476, 488, 490, 494, 497, 498, 510, 512, 513, 516, 525, 527, 531, 535, 536, 538, 539, 541, 552, 553, 556, 559, 560, 562, 568, 569, 574, 576, 577, 580, 581, 589, 598, 602, 605, 616, 617, 621, 631, 632, 633, 638, 644, 646, 648, 653, 654, 656, 657, 661, 662, 663, 666, 677, 680, 681, 682, 685, 686, 691, 692, 693, 694, 702, 705, 706, 716, 721, 733, 737, 739, 743, 749, 752, 756, 757, 760, 762, 765, 771, 779, 798, 802, 803, 810, 811, 815, 816, 818, 819, 822, 823, 825, 828, 830, 832, 833, 838, 839, 844, 850, 858, 860, 863, 864, 874, 877, 884, 888, 892, 900, 902, 903, 910, 913, 920, 921, 924, 929, 934, 937, 944, 947, 952, 957, 965, 970, 971, 975, 977, 979, 980, 984, 988, 989, 992, 993, 995, 996, 998, 999
out <- ec_cooc_count_pair(mat)
#plot(out$zs_bi*sqrt(1/0.2), out$zs_hy)
#abline(0,1)

# Classical example, in Stone & Roberts 1990
mat0 <- matrix(0, 10, 10)
mat1 <- matrix(1, 10, 10)
matU <- rbind(cbind(mat1, mat0), cbind(mat0, mat1))
ec_checkerboard(matU)
#> $c_units
#>     species1 species2 c_units
#> 1          1        2       0
#> 2          1        3       0
#> 3          1        4       0
#> 4          1        5       0
#> 5          1        6       0
#> 6          1        7       0
#> 7          1        8       0
#> 8          1        9       0
#> 9          1       10       0
#> 10         1       11     100
#> 11         1       12     100
#> 12         1       13     100
#> 13         1       14     100
#> 14         1       15     100
#> 15         1       16     100
#> 16         1       17     100
#> 17         1       18     100
#> 18         1       19     100
#> 19         1       20     100
#> 20         2        3       0
#> 21         2        4       0
#> 22         2        5       0
#> 23         2        6       0
#> 24         2        7       0
#> 25         2        8       0
#> 26         2        9       0
#> 27         2       10       0
#> 28         2       11     100
#> 29         2       12     100
#> 30         2       13     100
#> 31         2       14     100
#> 32         2       15     100
#> 33         2       16     100
#> 34         2       17     100
#> 35         2       18     100
#> 36         2       19     100
#> 37         2       20     100
#> 38         3        4       0
#> 39         3        5       0
#> 40         3        6       0
#> 41         3        7       0
#> 42         3        8       0
#> 43         3        9       0
#> 44         3       10       0
#> 45         3       11     100
#> 46         3       12     100
#> 47         3       13     100
#> 48         3       14     100
#> 49         3       15     100
#> 50         3       16     100
#> 51         3       17     100
#> 52         3       18     100
#> 53         3       19     100
#> 54         3       20     100
#> 55         4        5       0
#> 56         4        6       0
#> 57         4        7       0
#> 58         4        8       0
#> 59         4        9       0
#> 60         4       10       0
#> 61         4       11     100
#> 62         4       12     100
#> 63         4       13     100
#> 64         4       14     100
#> 65         4       15     100
#> 66         4       16     100
#> 67         4       17     100
#> 68         4       18     100
#> 69         4       19     100
#> 70         4       20     100
#> 71         5        6       0
#> 72         5        7       0
#> 73         5        8       0
#> 74         5        9       0
#> 75         5       10       0
#> 76         5       11     100
#> 77         5       12     100
#> 78         5       13     100
#> 79         5       14     100
#> 80         5       15     100
#> 81         5       16     100
#> 82         5       17     100
#> 83         5       18     100
#> 84         5       19     100
#> 85         5       20     100
#> 86         6        7       0
#> 87         6        8       0
#> 88         6        9       0
#> 89         6       10       0
#> 90         6       11     100
#> 91         6       12     100
#> 92         6       13     100
#> 93         6       14     100
#> 94         6       15     100
#> 95         6       16     100
#> 96         6       17     100
#> 97         6       18     100
#> 98         6       19     100
#> 99         6       20     100
#> 100        7        8       0
#> 101        7        9       0
#> 102        7       10       0
#> 103        7       11     100
#> 104        7       12     100
#> 105        7       13     100
#> 106        7       14     100
#> 107        7       15     100
#> 108        7       16     100
#> 109        7       17     100
#> 110        7       18     100
#> 111        7       19     100
#> 112        7       20     100
#> 113        8        9       0
#> 114        8       10       0
#> 115        8       11     100
#> 116        8       12     100
#> 117        8       13     100
#> 118        8       14     100
#> 119        8       15     100
#> 120        8       16     100
#> 121        8       17     100
#> 122        8       18     100
#> 123        8       19     100
#> 124        8       20     100
#> 125        9       10       0
#> 126        9       11     100
#> 127        9       12     100
#> 128        9       13     100
#> 129        9       14     100
#> 130        9       15     100
#> 131        9       16     100
#> 132        9       17     100
#> 133        9       18     100
#> 134        9       19     100
#> 135        9       20     100
#> 136       10       11     100
#> 137       10       12     100
#> 138       10       13     100
#> 139       10       14     100
#> 140       10       15     100
#> 141       10       16     100
#> 142       10       17     100
#> 143       10       18     100
#> 144       10       19     100
#> 145       10       20     100
#> 146       11       12       0
#> 147       11       13       0
#> 148       11       14       0
#> 149       11       15       0
#> 150       11       16       0
#> 151       11       17       0
#> 152       11       18       0
#> 153       11       19       0
#> 154       11       20       0
#> 155       12       13       0
#> 156       12       14       0
#> 157       12       15       0
#> 158       12       16       0
#> 159       12       17       0
#> 160       12       18       0
#> 161       12       19       0
#> 162       12       20       0
#> 163       13       14       0
#> 164       13       15       0
#> 165       13       16       0
#> 166       13       17       0
#> 167       13       18       0
#> 168       13       19       0
#> 169       13       20       0
#> 170       14       15       0
#> 171       14       16       0
#> 172       14       17       0
#> 173       14       18       0
#> 174       14       19       0
#> 175       14       20       0
#> 176       15       16       0
#> 177       15       17       0
#> 178       15       18       0
#> 179       15       19       0
#> 180       15       20       0
#> 181       16       17       0
#> 182       16       18       0
#> 183       16       19       0
#> 184       16       20       0
#> 185       17       18       0
#> 186       17       19       0
#> 187       17       20       0
#> 188       18       19       0
#> 189       18       20       0
#> 190       19       20       0
#> 
#> $c_score
#> [1] 52.63158
#> 
#> $c_score_s2
#> [1] 5263.158
#>