October 29th, 2017
## Why use R to do it?
### Workflow
library(raster) library(mapview) elvBtn = getData('alt', country='BTN', path='./assets/') mapview(elvBtn)
http://www.metafor-project.org/doku.php/plots:funnel_plot_with_trim_and_fill
Vellend et. al 2013
http://www.metafor-project.org/doku.php/plots:forest_plot_with_subgroups
Roca et al. 2016
Vellend et al. 2013
Vellend et al. 2013
install.packages("ctv"); ctv::install.views("MetaAnalysis")
Guido Schwarzer author of meta
Schwarzer, Guido, James R. Carpenter, and Gerta Rücker. Meta-Analysis with R.
Wolfgang Viechtbauer author metafor
metabin()
Arguments: event.e: Number of events in experimental group. n.e: Number of observations in experimental group. event.c: Number of events in control group. n.c: Number of observations in control group.
metabin()
metagen()
Arguments: TE: Estimate of treatment effect. seTE: Standard error of treatment estimate.
- `metabin()` / `metagen()` - `funnel`, `forest`, ...
install.packages('meta') library(meta) data(Olkin95) # ?Olkin95 meta1 <- metabin(event.e, n.e, event.c, n.c, data=Olkin95, subset=c(41,47,51,59), sm="RR", method="I", studlab=paste(author, year)) forest(meta1)
author | year | event.e | n.e | event.c | n.c |
---|---|---|---|---|---|
Fletcher | 1959 | 1 | 12 | 4 | 11 |
Dewar | 1963 | 4 | 21 | 7 | 21 |
Lippschutz | 1965 | 6 | 43 | 7 | 41 |
European 1 | 1969 | 20 | 83 | 15 | 84 |
European 2 | 1971 | 69 | 373 | 94 | 357 |
Heikinheimo | 1971 | 22 | 219 | 17 | 207 |
Calculate effect size: escalc()
Perform analysis: rma()
Plots: funnel()
, forest()
, labbe()
, …
install.packages('metafor') library('metafor')
r<-c(0.5,0.6,0.4,0.2,0.7,0.45) n<-c(40,90,25,400,60,50) studynames<-c(1,2,3,4,5,6) b<-data.frame(r,n,studynames) eszcor <- escalc(measure="ZCOR", ri=r, ni=n, data=b) FEmodel<-rma(yi=yi, vi=vi, data=eszcor, method="FE") #forest plot fixed-effect model: pooled effect size, forest(FEmodel)
r<-c(0.5,0.6,0.4,0.2,0.7,0.45) n<-c(40,90,25,400,60,50) studynames<-c(1,2,3,4,5,6) b<-data.frame(r,n,studynames)
knitr::kable(head(b))
r | n | studynames |
---|---|---|
0.50 | 40 | 1 |
0.60 | 90 | 2 |
0.40 | 25 | 3 |
0.20 | 400 | 4 |
0.70 | 60 | 5 |
0.45 | 50 | 6 |
eszcor <- escalc(measure="ZCOR", ri=r, ni=n, data=b) class(eszcor)
R>> [1] "escalc" "data.frame"
FEmodel<-rma(yi=yi, vi=vi, data=eszcor, method="FE") class(FEmodel)
R>> [1] "rma.uni" "rma"
forest(FEmodel)
forest(FEmodel,transf=transf.ztor)
funnel(FEmodel, yaxis="vinv", main="Inverse Sampling Variance")
par()
plot()
, barplot()
, funnel()
npt <- 15 vecX <- 1:npt vecY <- runif(length(vecX))
plot(vecX, vecY)
plot(vecX, vecY, xlim=c(0,15)+.5)
plot(vecX, vecY, xlim=c(0,15)+.5, pch=19)
plot(vecX, vecY, xlim=c(0,15)+.5, pch=19, col="#0f7aa2")
plot(vecX, vecY, xlim=c(0,15)+.5, pch='S', col="#0f7aa2")
plot(vecX, vecY, xlim=c(0,15)+.5, type='h', col="#0f7aa2")
plot(vecX, vecY, xlim=c(0,15)+.5, type='h', col="#0f7aa2", lwd=12)
par(lend=2); plot(vecX, vecY, xlim=c(0,15)+.5, type='h', col="#0f7aa2", lwd=12)
par(las=1) plot(vecX, vecY, xlim=c(0,15)+.5, pch=19, col="#0f7aa2")
par(las=1) plot(vecX, vecY, xlim=c(0,15)+.5, pch=19, col="#0f7aa2") abline(v=c(0.5,15.5), lty=2)
par(las=1, xaxs='i') plot(vecX, vecY, xlim=c(0,15)+.5, pch=19, col="#0f7aa2") abline(v=c(0.5,15.5), lty=2)
vCol <- rep(1, npt) vCol[c(2,5,8,9)] <- 2 vSize <- 1+2*runif(npt)
par(las=1, xaxs='i') plot(vecX, vecY, xlim=c(0,15)+.5, pch=19, col=c("#0f7aa2", '#a70d72')[vCol])
par(las=1, xaxs='i') plot(vecX, vecY, xlim=c(0,15)+.5, pch=19, col=c("#0f7aa2", '#a70d72')[vCol], cex=vSize)
par(las=1, xaxs='i') plot(vecX, vecY, xlim=c(0,15)+.5, pch=19, col=c("#0f7aa2", '#a70d72')[vCol], cex=vSize) abline(lm(vecY~vecX), col=2)
par(las=1, xaxs='i', mfrow=c(2,2)) for (i in 1:4){ plot(vecX, vecY, xlim=c(0,15)+.5, pch=19, col=c("#0f7aa2", '#a70d72')[vCol], cex=vSize) mtext(3, at=2, text=LETTERS[i], line=.5, cex=1.2) }
par(las=1, xaxs='i', mfrow=c(2,2), mar=c(2,2,2,1), oma=c(3,3,0,0), mgp=c(1,0.8,0)) ##-- for (i in 1:4){ plot(vecX, vecY, xlim=c(0,15)+.5, pch=19, col=c("#0f7aa2", '#a70d72')[vCol], cex=vSize, ann=FALSE) mtext(3, at=1, text=LETTERS[i], line=.5, cex=1.2) } ##-- mtext(1, text='Time', outer=T, line=1, cex=1.4) par(las=0) mtext(2, text='Variable', outer=T, line=1, cex=1.4)
layout(matrix(c(2,1,0,3), 2), widths=c(1,.5), heights=c(.5,1)) layout.show(3)
layout(matrix(c(1,2,0,3), 2), widths=c(1,.5), heights=c(.6,1)) par(mar=c(2, 4, 2, 1), las=1) for (i in 1:3){ plot(vecX, vecY, xlim=c(0,15)+.5, pch=19, col=c("#0f7aa2", '#a70d72')[vCol], cex=vSize, ann=FALSE) mtext(3, at=1, text=LETTERS[i], line=.5, cex=1.2) }
funnel(FEmodel, yaxis="vinv", main="Inverse Sampling Variance")
par(las=1, mar=c(5,6,4,1), mgp=c(4,1,0)) funnel(FEmodel, yaxis="vinv", main="Inverse Sampling Variance", col="#0f7aa2", back='white') legend('topright', legend='mypoints', pch=19, col="#0f7aa2", bty='n')
Data available on line as well Dataset S1
Figure 1 from Roca et al. 2016
Figure S2 Vellend et al. 2013
Find the R script I created to reproduce this figure here
Amanda Young kindly sent me her version using ggplot2
Roca et al. 2016
KevCaz
Roca et al. 2016
Amanda Young
Find the R script I created to reproduce this figure here
Vellend et al. 2013
KevCaz
To create the network that follows:
1- data available on Github;
2- R script available on Github.
2 books:
Chen, Ding-Geng, and Karl E. Peace. Applied Meta-Analysis with R. Chapman & Hall/CRC Biostatistics Series. Boca Raton: CRC Press/Taylor & Francis Group, 2013. + companion website
Schwarzer, Guido, James R. Carpenter, and Gerta Rücker. Meta-Analysis with R. Use R! Cham: Springer International Publishing, 2015. https://doi.org/10.1007/978-3-319-21416-0.