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Probability theory from scratch
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A few notes on History

Chevalier de Méré (1607-1684), Pascal (1623-1662) and Fermat
(1607-1665):

• de Méré: wit / courtier (Louis XIV) brought Pascal’s attention to 2
problems (1650-1655):

1 dice problem
2 division problem (problèmes des parties)

• Pascal solved the hardest problem (correspondence with Fermat)
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A few notes on History

• dice problem:

“When one throws with two dice, how many throws must one be
allowed in order to have a better than even chance of getting
two sixes at least once?”

• division problem:

“An elderly nobleman, staying at his country house, was
extremely fond of watching ball games, and so he called in two
young farmhands, saying, ‘Here are four ducats for which you
may play; the one who first takes eight games is the winner.’ So
they began to play, but when one had five games and the other
three games, they lost the ball and were unable to finish. The
question is how the prize should be divided.”

Ore, O. Pascal and the Invention of Probability Theory (1960).
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A few notes on History

• Reverend Thomas Bayes (1701 – 1761) An Essay Towards Solving a
Problem in the Doctrine of Chances (published posthumously)

• Pierre-Simon Laplace (1749–1827) Théorie Analytique des
Probabilités in 1812

• Huygens, de Moivre, Galton, Gauss, von Mises, Kolmogorov, Neyman,
Wiener, Wald, Pearson, Shannon, Fisher
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Examples

• Allesina and Tang, Stability criteria for complex ecosystems,
Nature (2012),

based on Tao, Vu & Krishnapur, Random matrices:
Universality of ESDs and the circular law, The Annals of
Probability (2010).

• Population genetics: a population = probability distribution of traits
(random variables)

• Expending the classical TIB: short talk this pm!
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Probability space

Let’s flip a coin

and define (Ω,F , P)

1 Ω: Sample space, i.e. set of all possible outcomes

• "Head" "Tail"

2 F : set of events i.e. combinations of outcomes (σ-field)

• ∅, "Head", "Tail", "Head or Tail" (Ω)

3 P: maps events occurrence into [0,1]

• P(∅) = 0; P(”Head”) = p; P(”Tail”) = 1 – p; P(Ω) = 1
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Probability space

Occurrence of species 1 on an island

1 Ω: Sample space set of all possible outcomes

• "Present" or "1", "Absent" or "0"

2 F : set of events i.e. 0 or more outcomes

• ∅, "0", "1", "1 or 0" (Ω)

3 P: assign a probability / map events occurrence into [0,1]

• P(∅) = 0; P(”1”) = p; P(”0”) = 1 – p; P(Ω) = 1
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Probability space

Occurrence of species 1 and species 2 on an island

1 Ω: {“00”, “01”, “10”, “11”}

2 F : ∅, Ω, “01”, “at least one species”

3 P: p00, p01, . . .
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Combining events

Let “A” and “B” denotes two distinct events:

1 A ∪ B: “A or B”
2 A ∩ B: “A and B”
3 A: “complement of A”

NB: A ∪ A = Ω and A ∩ A = ∅
NB: P(A) = 1 = P(A)
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Combining events

Ω
P(Ω) = 1
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Combining events

Ω
P(Ω) = P(∅) = 1 – P(Ω) = 0
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Combining events

A

P(A)
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Combining events

A
P(A) = 1 – P(A)
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Combining events

B

P(B)
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Combining events

A ∩B

P(A
⋂
B) =?
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Combining events

A ∪B

P(A
⋃
B) = P(A) + P(B) – P(A

⋂
B)
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Combining events

A ∪B

P(A ∪ B) = 1 – P(A ∪ B)
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Combining events

A ∩B

P(A ∩ B) = P(B) – P(A ∩ B)
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Combining events - disjoint events

A

B

A ∩ B = ∅; P(A ∩ B) = 0
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Combining events - partition

Consider B

and Ai where i ∈ {1,. . . ,n}:

1 ∀ {i, j} \ i 6= j, P(Ai ∩ Aj) = 0 pairwise disjoint

2
⋂
n

i
Ai = B ⇒

∑
n

i
P(Ai) = P(B)

then, the set Ai is a partition of B.
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Combining events - partition

B
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Combining events - partition

A1 A2 A3

P(B) = P(A1 ∪ A2 ∪ A3)

= P(A1) + P(A2) + P(A3)
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Combining events - partition

A1 A2 A3

P(B) = P(A1 ∪ A2 ∪ A3) = P(A1) + P(A2) + P(A3)
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Combining events - partition

A1

A2

A3

A4 A5
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Combining events - partition

Ai where i ∈ {1, 2, 3, 4, 5} is a partition of Ω

5∑
i

P(Ai) = 1
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Combining events - formula (law) of total probability

Ai a partition of Ω and B an event:

P(B) =

n∑
i

P(B ∩ Ai)
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Combining events - formula (law) of total probability

A1

A2

A3

A4 A5

B
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Combining events - formula (law) of total probability

Ai where i ∈ {1, 2, 3, 4, 5} is a partition of Ω

P(B) =

5∑
i

P(B ∩ Ai)
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Occurrence of species 1 and species 2 on an island

• Events: {“00”, “01”, “10”, “11”}

• P(”00” ∩ ”01”) = 0

• ”00” ∪ ”01” ∪ ”10” ∪ ”11” = Ω

• {“00”, “01”, “10”, “11”} is a partition of Ω

• p00 + p01 + p10 + p11 = 1
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Describes a probability distribution
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Let’s practice 1 (15 min)

PRACTICE 1
• P(A ∪ B ∪ C)

• the duck hunter 1 bullet
• the duck hunter 2 bullets / 2 ducks - 1 duck
• bonus: how to simulate a dice with a coin?
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Let’s practice 1 - P(A⋃B⋃ C)

A

B

C

P(A
⋃
B
⋃
C) =?
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Let’s practice 1 - Elmer, the duck hunter

Figure 1: Daffy & Elmer

• Elmer, one bullet, one duck
• Elmer, two bullets, two ducks
• Elmer, two bullets, one duck
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Solution 1 - P(A⋃B⋃ C)

A

B

C
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Solution 1 - P(A⋃B⋃ C)

• See the Inclusion–exclusion principle article on wikipedia (formule du
crible de Poincaré).
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Solution 1 - the duck paradigm

• Elmer, one bullet, one duck
• “sucess” (“1”)/ “failure” (“0”)
• P(”sucess”) = p ; P(”failure”) = 1 – p
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Random variables

• Flipping a coin / occurrence of 1 species on an island / shooting a
duck

→ we apply a similar probabilistic approach.

• Success: “Head”, “Presence”, “one dead duck” → 1

• Failure: “Tails”, “Absence”, “no dinner tonight” → 0

• Now let X denote a variable such as:
• X = 1 success: P(X) = p ;
• X = 0 failure: P(X) = 1 – p

• Define a random variable + assign a probability distribution.
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Random variables and probability distribution

• A random variable X : Ω→ M where M is a measurable space
(natural numbers, real numbers, . . . )

• A probability distribution f is a function that assigns probability
under certain constraints:

1 f specifies P for the partition of Ω made of singletons
2 f defines p0, p1, p2, . . . , pn such as

∑
p
i
= 1

• Coin P(”Head”) = P(1) = p; P(”Tail”) = P(0) = 1 – p
• Dice P(1) = P(2) = ... = P(6) = 1/6
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Independence - Intuition

X

X

p

1−p

SHOOT 1
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Independence - Intuition - 2 ducks

X1

X2

X2

X1

X2

X2

p

p

p
1−p

1−p

1−p

SHOOT 1 SHOOT 2
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Independence - Intuition - 2 ducks

X1

X2

X2

X1

X2

X2

p

p

p
1−p

1−p

1−p

SHOOT 1 SHOOT 2

pp

p(1−p)

(1−p)p

(1−p)(1−p)
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Independence - Intuition - 1 duck

X1

X2

X2

X1

X2

X2

p

1−p

SHOOT 1 SHOOT 2
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Independence - Intuition - 1 duck

X1

X2

X2

X1

X2

X2

p

0

0
1−p

1

1

SHOOT 1 SHOOT 2

?

?

?

?
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Independence - Definition

Two events are independent iif:

• P(A ∩ B) = P(A)P(B)

Remarks:

1 this is an assumption often implicit (notably in statistics)

2 events that may not seem independent (intuitively) may be
independent according to the definition

3 A and B independent then P(A ∪ B) = P(A) + P(B) – P(A)P(B)
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Let’s practice 2 (15 min)

Elmer shoots 3 independent ducks with a success rate of p = 0.4

1 Find the probability he misses the first 2 ducks and kills the last one.

2 Find the probability he kills 2 ducks.

He now shoots n independent ducks with a success rate of p

3 Find the probability he misses the n – 1 first ducks and kills the last
one

4 Find the probability he kills k ducks.

• bonus: solve the dice problem
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Solution 2

Y = “number of duck Elmer killed”,

Y ∈ 0, 1, 2, 3

Z = “number of failure before first success” Z = 0, 1, ..., n
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Finite and countably infinite support sets

1 Finite set: X = {1, 2, . . . , n}

• Rolling n dices
• presence of n species on an island
• killing k/n ducks

2 Countably infinite set X = {1, 2, 3, . . . , +∞}

• number of species on a given island
• number of failure before the first success
• missing n ducks before killing one

+∞∑
i

P(Xi) = 1
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Binomial distribution dbinom

0 2 4 6 8 10

0.0

0.1

0.2

0.3

0.4

0.5

Values (x)

P
ro

ba
bi

lit
y

p=.25 p=.5 p=.75

P(X = k) =

(
n

k

)
p
k
(1 – p)n–k
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Uniform distribution

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0.0

0.1

0.2

0.3

0.4

0.5

Values (x)

P
ro
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bi

lit
y

n=2 n=5 n=10

P(X = k) =
1
n
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Negative binomial distribution dnbinom

0 5 10 15 20 25

0.0
0.1
0.2
0.3
0.4
0.5
0.6

Values (x)

P
ro

ba
bi

lit
y

p=.1 p=.25 p=.5

P(X = k) = p(1 – p)k–1
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Poisson distribution dpois

0 5 10 15 20

0.0

0.1

0.2

0.3

0.4

0.5

Values (x)

P
ro

ba
bi

lit
y

p=1 p=5 p=10

P(X = k) =
λ
k
e
–λ

k!
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PAUSE

PAUSE PAUSE PAUSE PAUSE PAUSE PAUSE
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PART 2
Infinite sets
Moments
The Bayes theorem
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Infinite set - where is the duck?

Kevin Cazelles – Day 1 - A few notes on the probability theory



Infinite set - where is the duck?

Kevin Cazelles – Day 1 - A few notes on the probability theory



Infinite set - where is the duck?

Kevin Cazelles – Day 1 - A few notes on the probability theory



Infinite set - where is the duck?

Let X be the random values x-coordinate

• values: x ∈ [0,10]
• P(X = x) =?

• P(X ∈ [a, b]) makes sense!
• P(X ∈ [0, 10]) = 1
• P(X ∈ [0, 5]) = 0.5
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Infinite set - where is the duck?

• P(X = x) = 1
∞

= 0 but. . .

We need something else!
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Infinite set - probability density function (p.d.f)

f is a p.d.f iif:

1 defined on [a,b] (a may be -∞ / b may be +∞)

2 positive
3 regular
4 and:

∫
b

a

f(x)dx = 1
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Infinite set - where’s the duck?

0

.1

10

∀ x ∈ [0, 10] f(x) = .1 (U[0,10])
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Infinite set - where’s the duck?

0

.1

10

∫ 10

0
f(x)dx = 1
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Infinite set - where’s the duck?

0

.1

10

∫ 5

0
f(x)dx = .5
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Probability distribution - act 2

Probability distribution function:

• probability mass function, p.m.f.: random variables with a discrete
support set (or countable infinite)

• probability density function, p.d.f.: random variables with a
infinite support set
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Probability distribution - act 2

• f(x) [x] (pmf or pdf)
•
∫
f(x)dx

∫
[x]dx

Conditional probability:

• f(x|y) [x|y]
• f(x) = f(x|y)f(y)
• f(x) = f(x|y)P(y)
• f(x1)f(x2)

Kevin Cazelles – Day 1 - A few notes on the probability theory



Probability distribution - act 2

• f(x) [x] (pmf or pdf)
•
∫
f(x)dx

∫
[x]dx

Conditional probability:

• f(x|y) [x|y]
• f(x) = f(x|y)f(y)
• f(x) = f(x|y)P(y)
• f(x1)f(x2)

Kevin Cazelles – Day 1 - A few notes on the probability theory



Cumulative distribution function (c.d.f.)

F(y) = P(X ≤ y) =
∫
y

–∞ f(x)dx
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Normal distribution - p.d.f. dnorm
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Lognormal distribution - c.d.f. pnorm
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Lognormal distribution - p.d.f. dlnorm
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Lognormal distribution - c.d.f. plnorm
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Exponential distribution - p.d.f. dexp

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

seqx

de
xp

(s
eq

x,
 1

)

λ = 1
λ = 0.5

f(x) = λe
–λx

Kevin Cazelles – Day 1 - A few notes on the probability theory



Exponential distribution - c.d.f. pexp
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Practice 3 (10 min)

• You’ve set up a meeting with 2 colleagues:

1 you = regular behavior
2 colleague 1 = often late but you never really know when he’ll show up
3 colleague 2 = regular behavior if the starting time were 30 min

earlier. . .

• How to model tpon arrival?

• Find the probability that you get started on time?

• Find the probability that the meeting is delayed by at least half an
hour?
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Solution 3

1- You: N (0, 1)

2- Amael: N (.5, 3)

3- Will: N (.5, .5)
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Solution 3

1 Starting on time

2 Meeting delayed by at least half an hour
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Dealing with joint distributions

1 P(X ∩ Y) or P(X, Y) if independent P(X)P(Y)
2 P(X|Y) or P(X|Y)
3 f(x, y) if independent f(y)f(x)
4 f(x|y), f(y|x)
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Expectation and moments

Expectation (a.k.a expected value, mean):

E(X) =

∫
xf(x)dx

Variance:

V(X) =

∫
(x – E(x))

2
f(x)dx

n-th moment:

E(X
n
) =

∫
x
n
f(x)dx

Moment-generating function (MGF) alternative speciation of the
distribution.
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Quantiles

Quantile α:

xα P(X ≤ xα) = α

Examples:

• median (α = .5)
• 1st and 3rd quartile (α = .25 α = .75)
• 5 / 95 percentile (α = .05 α = .95)

R: qbinom, qpois, qnorm, . . .
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Quantiles

−4

−2

0

2

4

1st quartile

3rd quartile

Kevin Cazelles – Day 1 - A few notes on the probability theory



More about expectation

E(g(X)) =

∫
g(x)f(x)dx

Z = X
2
E(Z) =

∫
x
2
f(x)dx

Z = cos(X) E(Z) =

∫
cos(x)f(x)dx
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Expectation / variance

• Binomial: X : B(n, p)

P(X = k) =

(
n

k

)
p
k
(1 – p)n–k

E(X) =

n∑
k

kP(X = k) =

n∑
k

k

(
n

k

)
p
k
(1 – p)n–k

E(X) = np

V(X) = npq
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Example Expectation / variance

• Poisson P (λ): E(X) = λ ; V(X) = λ

• Binomial negative: NB(r, p): E(X) = (1–p)r
p

; V(X) =
(1–p)r
(p)2

• Binomial negative: NB(1, p): E(X) = (1–p)
p

; V(X) =
(1–p)
(p)2

• Normal N (μ, σ): E(X) = μ; V(X) = σ
2

• Exponential E (λ): E(X) = λ; V(X) = λ
2
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Example Expectation / variance

Figure 2: Normal distribution’s properties on Wikipedia
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Let’s practice 4 (15 min)

Elmer and the frightening question!

• Elmer’s success rate is p
• a bullet is 3$
• a duck of the same quality is 60$
• “Should Elmer better stop hunting?”
• Find p

sh
the success rate below which Elmer should better stay at

home?
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Solution 4

Kevin Cazelles – Day 1 - A few notes on the probability theory



Independence act 2

X1

X2

X2

X1

X2

X2

SHOOT 1 SHOOT 2

?

?

?

?
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Independence act 2

Let’s A and B be two events, the conditional probability P(A|B) is defined
as:

P(A|B) = P(A ∩ B)
P(B)

P(X1 = 1|X2 = 1) =
P(X1 = 1 ∩ X2 = 1)

P(X2 = 1)

consequently:

P(A ∩ B) = P(A|B)P(B)
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Independence act 2

Independence:

P(A|B) = P(A)

P(A ∩ B) = P(A|B)P(B)
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Independence act 2

X1

X2

X2

X1

X2

X2

P(X1)

P(X1 l X2)

P(X1 l X2)

P(X1)
P(X1 l X2)

P(X1 l X2)

?

?

?

?
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Bayes theorem

P(A ∩ B) = P(B ∩ A)

P(A|B)P(B) = P(B|A)P(A)

P(A|B) = P(B|A)P(A)
P(B)
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Bayes theorem

“Given the number of times in which an unknown event has
happened and failed: Required the chance that the probability of
its (specific event) happening in a single trial lies somewhere
between any two degrees of probability that can be named.”

Proposition 3:

“The probability that two subsequent events will both happen is
a ratio compounded of the probability of the 1st, and the
probability of the 2nd on supposition the 1st happens.”

*An Essay Towards Solving a Problem in the Doctrine of Chances*
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Bayes theorem

Proposition 5:

“If there be two subsequent events, the probability of the 2nd
b/N and the probability both together P/N, and it being first
discovered that the 2nd event has happened, from hence I guess
that the 1st event has also happened, the probability I am in the
right is P/b”

P(A|B) = P(B|A)P(A)
P(B)

• information
• inferences
• cause/consequence
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Bayes theorem

Ci (i ∈ 1, ..., n) is a partition of Ω, let’s use the law of total probability

P(A|B) = P(B|A)P(A)∑
P(B ∩ Ci)

P(A|B) = P(B|A)P(A)∑
P(B|Ci)P(Ci)

f(A|B) = f(B|A)f(A)∫
f(b|c)f(c)dc
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P(A|B) = P(B|A)P(A)∑
P(B ∩ Ci)
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Practice 5 - Are you infected? (20 min)

• Prevalence is π (0.01)

• test to determine whether or not you are infected
• error type I is α = .025
• error type II β = .05

• You take the test, it is positive, are you infected?
• You take the test, it is negative, are you infected?
• bonus: build a function to answer the questions above for any

parameters’ value.
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Solution 5

Let’s use 2 random variables:

• X = 1 (“sick”); X = 0 (“sane”)
• T = 1 (“test positive”); T = 0 (“test negative”)
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LUNCH

LUNCH LUNCH LUNCH LUNCH LUNCH
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PART 3
Let’s practice more
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Practice 6 - Elmer is back (25 min)

• Elmer’s precision decreases as distance increases

• Ducks escape when Elmer gets too close

1 Model P(X = 1|D = d)
2 Find the effective rate of success p (how to model P(D = d))
3 Elmer brings 10 bullets, what’s the probability he’ll have a nice diner?

• bonus: solve the division problem
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Solution 6
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Practice 7 - Elmer. . . the truth (25 min)

val1.csv (or val1.Rds) are the results of 1000 shoots Elmer took.

1 Create a function to compute the probability obtaining such results
for any p.

2 Deduce the probability of having these results.
3 Create a function that computes P(p|X) for any value of p.
4 We have a new set of data val2.csv or val2.Rds, what should you

do?
5 bonus: 1-3 including the distance (see val3.csv or val3.Rds)
6 bonus 2: Answer Bayes’ original question
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Solution 7
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Let’s step back

What do we do when we do statistics? (simple case)

• observations: x1, x2, . . . , xn

• Hypothesis: outcomes of random variables independent and
identically distributed (i.i.d.) Xi

• The distribution is given by θ (i.e. N (θ) where θ = (μ, σ))

• We try to find out θ ’s value(s) given xi : inference
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Let’s take a step back

• To do so, we build estimators

• Normal: θ = (μ, σ)
• μ̂ =

1
n

∑
n

i
xi

• σ̂ =
1
n

∑
n

i
(xi – μ)

2

• σ̂ =
1
n–1
∑
n

i
(xi – μ̂)

2

• Then we assess the goodness of our estimation : IC / tests
• Bayesian framework offers few other possibilities.
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Why normal, why?

Central limit theorem:

Xi, i ∈ 1, 2, ..., n

i.i.d. L(θ),

Xi – μ

σ
→ N(μ, σ)

Poincaré:

“Tout le mode croit à la loi normale : les physiciens parcequ’ils
pensent que les mathématiciens l’ont démontrée et les
mathématiciens parcequ’ils croient qu’elle a été vérifiée par les
physiciens.”
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To be continued

Kevin Cazelles – Day 1 - A few notes on the probability theory


