Day 1 - A few notes on the probability theory

Flip a coin and compute the likelihood

Kevin Cazelles
University of Guelph

August 14, 2017

UNIVERSITÉ DE
SHERBROOKE

PART 1

Probability theory from scratch

A few notes on History

Chevalier de Méré (1607-1684), Pascal (1623-1662) and Fermat (1607-1665):

A few notes on History

Chevalier de Méré (1607-1684), Pascal (1623-1662) and Fermat (1607-1665):

- de Méré: wit / courtier (Louis XIV) brought Pascal's attention to 2 problems (1650-1655):

A few notes on History

Chevalier de Méré (1607-1684), Pascal (1623-1662) and Fermat (1607-1665):

- de Méré: wit / courtier (Louis XIV) brought Pascal's attention to 2 problems (1650-1655):
(1) dice problem
(2) division problem (problèmes des parties)

A few notes on History

Chevalier de Méré (1607-1684), Pascal (1623-1662) and Fermat (1607-1665):

- de Méré: wit / courtier (Louis XIV) brought Pascal's attention to 2 problems (1650-1655):
(1) dice problem
(2) division problem (problèmes des parties)
- Pascal solved the hardest problem (correspondence with Fermat)

A few notes on History

- dice problem:

A few notes on History

- dice problem:
"When one throws with two dice, how many throws must one be allowed in order to have a better than even chance of getting two sixes at least once?"

A few notes on History

- dice problem:
"When one throws with two dice, how many throws must one be allowed in order to have a better than even chance of getting two sixes at least once?"
- division problem:

A few notes on History

- dice problem:
"When one throws with two dice, how many throws must one be allowed in order to have a better than even chance of getting two sixes at least once?"
- division problem:
"An elderly nobleman, staying at his country house, was extremely fond of watching ball games, and so he called in two young farmhands, saying, 'Here are four ducats for which you may play; the one who first takes eight games is the winner.' So they began to play, but when one had five games and the other three games, they lost the ball and were unable to finish. The question is how the prize should be divided."

Ore, O. Pascal and the Invention of Probability Theory (1960).

A few notes on History

- Reverend Thomas Bayes (1701-1761) An Essay Towards Solving a Problem in the Doctrine of Chances (published posthumously)

A few notes on History

- Reverend Thomas Bayes (1701-1761) An Essay Towards Solving a Problem in the Doctrine of Chances (published posthumously)
- Pierre-Simon Laplace (1749-1827) Théorie Analytique des Probabilités in 1812

A few notes on History

- Reverend Thomas Bayes (1701-1761) An Essay Towards Solving a Problem in the Doctrine of Chances (published posthumously)
- Pierre-Simon Laplace (1749-1827) Théorie Analytique des Probabilités in 1812
- Huygens, de Moivre, Galton, Gauss, von Mises, Kolmogorov, Neyman, Wiener, Wald, Pearson, Shannon, Fisher

References

(1) Hacking I., The Emergence of Probability (2006).

References

(1) Hacking I., The Emergence of Probability (2006).
(2) Hendricks V. F., Pedersen S. A., Jørgensen K. F. , Probability Theory Philosophy, Recent History and Relations to Science (2001).

References

(1) Hacking I., The Emergence of Probability (2006).
(2) Hendricks V. F., Pedersen S. A., Jørgensen K. F. , Probability Theory Philosophy, Recent History and Relations to Science (2001).
(3) Brémaud P., An Introduction to Probability Modelling (1988).

Examples

- Allesina and Tang, Stability criteria for complex ecosystems, Nature (2012),

Examples

- Allesina and Tang, Stability criteria for complex ecosystems, Nature (2012), based on Tao, Vu \& Krishnapur, Random matrices: Universality of ESDs and the circular law, The Annals of Probability (2010).

Examples

- Allesina and Tang, Stability criteria for complex ecosystems, Nature (2012), based on Tao, Vu \& Krishnapur, Random matrices: Universality of ESDs and the circular law, The Annals of Probability (2010).
- Population genetics: a population = probability distribution of traits (random variables)

Examples

- Allesina and Tang, Stability criteria for complex ecosystems, Nature (2012), based on Tao, Vu \& Krishnapur, Random matrices: Universality of ESDs and the circular law, The Annals of Probability (2010).
- Population genetics: a population = probability distribution of traits (random variables)
- Expending the classical TIB: short talk this pm!

Probability space

Let's flip a coin

Probability space

Let's flip a coin and define $(\Omega, \mathcal{F}, \mathrm{P})$

Probability space

Let's flip a coin and define $(\Omega, \mathcal{F}, \mathrm{P})$
(1) Ω : Sample space, i.e. set of all possible outcomes

Probability space

Let's flip a coin and define $(\Omega, \mathcal{F}, \mathrm{P})$
(1) Ω : Sample space, i.e. set of all possible outcomes
(2) \mathcal{F} : set of events i.e. combinations of outcomes (σ-field)

Probability space

Let's flip a coin and define $(\Omega, \mathcal{F}, \mathrm{P})$
(1) Ω : Sample space, i.e. set of all possible outcomes
(2) \mathcal{F} : set of events i.e. combinations of outcomes (σ-field)
(3) P: maps events occurrence into $[0,1]$

Probability space

Let's flip a coin and define $(\Omega, \mathcal{F}, \mathrm{P})$
(1) Ω : Sample space, i.e. set of all possible outcomes

- "Head" "Tail"
(2) \mathcal{F} : set of events i.e. combinations of outcomes (σ-field)
(3) P: maps events occurrence into $[0,1]$

Probability space

Let's flip a coin and define $(\Omega, \mathcal{F}, \mathrm{P})$
(1) Ω : Sample space, i.e. set of all possible outcomes

- "Head" "Tail"
(2) \mathcal{F} : set of events i.e. combinations of outcomes (σ-field)
- Ø, "Head", "Tail", "Head or Tail" (Ω)
(3) P: maps events occurrence into $[0,1]$

Probability space

Let's flip a coin and define $(\Omega, \mathcal{F}, \mathrm{P})$
(1) Ω : Sample space, i.e. set of all possible outcomes

- "Head" "Tail"
(2) \mathcal{F} : set of events i.e. combinations of outcomes (σ-field)
- Ø, "Head", "Tail", "Head or Tail" (Ω)
(3) P: maps events occurrence into $[0,1]$
- $P(\emptyset)=0 ; P("$ Head" $)=p ; P(" T a i l ")=1-p ; P(\Omega)=1$

Probability space

Occurrence of species 1 on an island

Probability space

Occurrence of species 1 on an island
(1) Ω : Sample space set of all possible outcomes

- "Present" or "1", "Absent" or "0"

Probability space

Occurrence of species 1 on an island
(1) Ω : Sample space set of all possible outcomes

- "Present" or "1", "Absent" or "0"
(2) \mathcal{F} : set of events i.e. 0 or more outcomes
" Ø, "0", "1", "1 or 0" (Ω)

Probability space

Occurrence of species 1 on an island
(1) Ω : Sample space set of all possible outcomes

- "Present" or "1", "Absent" or "0"
(2) \mathcal{F} : set of events i.e. 0 or more outcomes
" Ø, "0", "1", "1 or 0" (Ω)
(3) P: assign a probability / map events occurrence into $[0,1]$
- $P(\emptyset)=0 ; P(" 1 ")=p ; P(" 0 ")=1-p ; P(\Omega)=1$

Probability space

Occurrence of species 1 and species 2 on an island

Probability space

Occurrence of species 1 and species 2 on an island
(1) $\Omega:\{" 00 ", " 01 ", " 10 ", " 11 "\}$

Probability space

Occurrence of species 1 and species 2 on an island
(11) $\Omega:\{" 00 ", " 01 ", " 10 ", " 11 "\}$
(2) $\mathcal{F}: \emptyset, \Omega$, " 01 ", "at least one species"

Probability space

Occurrence of species 1 and species 2 on an island
(11) $\Omega:\{" 00 ", " 01 ", " 10 ", " 11 "\}$
(2) $\mathcal{F}: \emptyset, \Omega$, " 01 ", "at least one species"
(3) P: p_{00}, p_{01}, \ldots

Combining events

Let " A " and " B " denotes two distinct events:

Combining events

Let " A " and " B " denotes two distinct events:
(1) $\mathrm{A} \cup \mathrm{B}:$ " A or $\mathrm{B} "$

Combining events

Let " A " and " B " denotes two distinct events:
(1) $A \cup B$: "A or $B "$
(2) $\mathrm{A} \cap \mathrm{B}$: " A and B "

Combining events

Let " A " and " B " denotes two distinct events:
(1) $A \cup B$: "A or $B "$
(2) $\mathrm{A} \cap \mathrm{B}$: " A and B "
(3) $\overline{\mathrm{A}}$: "complement of A "

Combining events

Let " A " and " B " denotes two distinct events:
(1) $A \cup B:$ "A or $B "$
(2) $A \cap B$: "A and B "
(3) $\overline{\mathrm{A}}$: "complement of A "
$N B: A \cup \bar{A}=\Omega$ and $A \cap \bar{A}=\emptyset$

Combining events

Let " A " and " B " denotes two distinct events:
(1) $A \cup B:$ "A or $B "$
(2) $\mathrm{A} \cap \mathrm{B}:$ " A and $\mathrm{B} "$
(3) $\overline{\mathrm{A}}$: "complement of A "
$N B: A \cup \bar{A}=\Omega$ and $A \cap \bar{A}=\emptyset$
$N B: P(\bar{A})=1=P(A)$

Combining events

$P(\Omega)=1$

Combining events

$P(\bar{\Omega})=P(\emptyset)=1-P(\Omega)=0$

Combining events

P(A)

Combining events

$P(\bar{A})=1-P(A)$

Combining events

P(B)

Kevin Cazelles - Day 1 - A few notes on the probability theory

Combining events

$P(A \cap B)=$?
Kevin Cazelles - Day 1 - A few notes on the probability theory

Combining events

$P(A \cup B)=P(A)+P(B)-P(A \cap B)$

Combining events

$A \cup B$
$P(A \cup B)=1-P(A \cup B)$
Kevin Cazelles - Day 1 - A few notes on the probability theory

Combining events

$P(\bar{A} \cap B)=P(B)-P(A \cap B)$

Combining events - disjoint events

$A \cap B=\emptyset ; P(A \cap B)=0$

Combining events - partition

Consider B

Combining events - partition

Consider B and A_{i} where $i \in\{1, \ldots, n\}$:

Combining events - partition

Consider B and A_{i} where $i \in\{1, \ldots, n\}$:
(1) $\forall\{\mathrm{i}, \mathrm{j}\} \backslash \mathrm{i} \neq \mathrm{j}, \mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \cap \mathrm{A}_{\mathrm{j}}\right)=0$ pairwise disjoint

Combining events - partition

Consider B and A_{i} where $i \in\{1, \ldots, n\}$:
(1) $\forall\{\mathrm{i}, \mathrm{j}\} \backslash \mathrm{i} \neq \mathrm{j}, \mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \cap \mathrm{A}_{\mathrm{j}}\right)=0$ pairwise disjoint
(2) $\bigcap_{i}^{n} A_{i}=B \Rightarrow \sum_{i}^{n} P\left(A_{i}\right)=P(B)$

Combining events - partition

Consider B and A_{i} where $i \in\{1, \ldots, n\}$:
(1) $\forall\{\mathrm{i}, \mathrm{j}\} \backslash \mathrm{i} \neq \mathrm{j}, \mathrm{P}\left(\mathrm{A}_{\mathrm{i}} \cap \mathrm{A}_{\mathrm{j}}\right)=0$ pairwise disjoint
(2) $\bigcap_{i}^{n} A_{i}=B \Rightarrow \sum_{i}^{n} P\left(A_{i}\right)=P(B)$
then, the set A_{i} is a partition of B.

Combining events - partition

Combining events - partition

$P(B)=P\left(A_{1} \cup A_{2} \cup A_{3}\right)$

Combining events - partition

$P(B)=P\left(A_{1} \cup A_{2} \cup A_{3}\right)=P\left(A_{1}\right)+P\left(A_{2}\right)+P\left(A_{3}\right)$

Combining events - partition

A3

A1

A4
A5

A2

Combining events - partition

A_{i} where $i \in\{1,2,3,4,5\}$ is a partition of Ω

$$
\sum_{i}^{5} P\left(A_{i}\right)=1
$$

Combining events - formula (law) of total probability

A_{i} a partition of Ω and B an event:

$$
P(B)=\sum_{i}^{n} P\left(B \cap A_{i}\right)
$$

Combining events - formula (law) of total probability

Combining events - formula (law) of total probability

A_{i} where $i \in\{1,2,3,4,5\}$ is a partition of Ω

$$
P(B)=\sum_{i}^{5} P\left(B \cap A_{i}\right)
$$

Occurrence of species 1 and species 2 on an island

" Events: \{"00", "01", "10", "11"\}

Occurrence of species 1 and species 2 on an island

" Events: \{"00", "01", "10", "11"\}

- P("00" $\cap " 01 ")=0$

Occurrence of species 1 and species 2 on an island

" Events: \{"00", "01", "10", "11"\}

- "00" \cup " $01 " \cup " 10 " \cup " 11 "=\Omega$

Occurrence of species 1 and species 2 on an island

" Events: \{"00", "01", "10", "11"\}

- $P(" 00 " \cap " 01 ")=0$
- "00" \cup " $01 " \cup " 10 " \cup " 11 "=\Omega$
" $\{$ " 00 ", " 01 ", " $10 ", " 11 "\}$ is a partition of Ω

Occurrence of species 1 and species 2 on an island

- Events: \{"00", "01", "10", "11"\}
- $P(" 00 " \cap " 01 ")=0$
- "00" \cup " $01 " \cup " 10 " \cup " 11 "=\Omega$
" \{"00", " 01 ", " 10 ", " 11 " $\}$ is a partition of Ω
${ }^{-} \mathrm{p}_{00}+\mathrm{p}_{01}+\mathrm{p}_{10}+\mathrm{p}_{11}=1$

Occurrence of species 1 and species 2 on an island

- " 00 ", " 01 ", " 10 ", " 11 " are singleton sets (a.k.a unit sets)

Occurrence of species 1 and species 2 on an island

" "00", " 01 ", " 10 ", " 11 " are singleton sets (a.k.a unit sets)
" $\{$ " 00 ", " 01 ", " 10 ", " 11 " $\}$ a partition of Ω made of singleton sets

Occurrence of species 1 and species 2 on an island

" "00", "01", " 10 ", " 11 " are singleton sets (a.k.a unit sets)

- $\{$ " 00 ", " 01 ", " 10 ", " 11 " $\}$ a partition of Ω made of singleton sets
- $p_{00}, p_{01}, p_{10}, p_{11}$

Occurrence of species 1 and species 2 on an island

" "00", " 01 ", " 10 ", " 11 " are singleton sets (a.k.a unit sets)

- $\{$ " 00 ", " 01 ", " 10 ", " 11 " $\}$ a partition of Ω made of singleton sets
- $p_{00}, P_{01}, p_{10}, p_{11}$

Describes a probability distribution

Let's practice 1 (15 min)

PRACTICE 1

- $P(A \cup B \cup C)$

Let's practice 1 (15 min)

PRACTICE 1

- $P(A \cup B \cup C)$
- the duck hunter 1 bullet

Let's practice 1 (15 min)

PRACTICE 1

- $P(A \cup B \cup C)$
- the duck hunter 1 bullet
- the duck hunter 2 bullets / 2 ducks - 1 duck

Let's practice 1 (15 min)

PRACTICE 1

- $P(A \cup B \cup C)$
- the duck hunter 1 bullet
- the duck hunter 2 bullets / 2 ducks - 1 duck
- bonus: how to simulate a dice with a coin?

Let's practice 1 - $P(A \cup B \cup C)$

$P(A \cup B \cup C)=$?

Let's practice 1 - Elmer, the duck hunter

Figure 1: Daffy \& Elmer

- Elmer, one bullet, one duck
- Elmer, two bullets, two ducks
- Elmer, two bullets, one duck

Solution 1 - $P(A \cup B \cup C)$

Solution 1 - $P(A \cup B \cup C)$

- See the Inclusion-exclusion principle article on wikipedia (formule du crible de Poincaré).

Solution 1 - the duck paradigm

- Elmer, one bullet, one duck
- "sucess" ("1")/ "failure" ("0")
" $P($ "sucess" $)=p$; $P($ "failure" $)=1-p$

Random variables

- Flipping a coin / occurrence of 1 species on an island / shooting a duck

Random variables

- Flipping a coin / occurrence of 1 species on an island / shooting a duck \rightarrow we apply a similar probabilistic approach.

Random variables

- Flipping a coin / occurrence of 1 species on an island / shooting a duck \rightarrow we apply a similar probabilistic approach.
" Success: "Head", "Presence", "one dead duck" $\boldsymbol{\rightarrow} \mathbf{1}$

Random variables

- Flipping a coin / occurrence of 1 species on an island / shooting a duck \rightarrow we apply a similar probabilistic approach.
- Success: "Head", "Presence", "one dead duck" $\boldsymbol{\rightarrow} \mathbf{1}$
- Failure: "Tails", "Absence", "no dinner tonight" $\boldsymbol{\rightarrow} \mathbf{0}$

Random variables

- Flipping a coin / occurrence of 1 species on an island / shooting a duck \rightarrow we apply a similar probabilistic approach.
" Success: "Head", "Presence", "one dead duck" $\boldsymbol{\rightarrow} \mathbf{1}$
" Failure: "Tails", "Absence", "no dinner tonight" $\boldsymbol{\rightarrow} \mathbf{0}$
- Now let X denote a variable such as:
- $X=1$ success: $P(X)=p$;
- $X=0$ failure: $P(\bar{X})=1-p$

Random variables

- Flipping a coin / occurrence of 1 species on an island / shooting a duck \rightarrow we apply a similar probabilistic approach.
" Success: "Head", "Presence", "one dead duck" $\boldsymbol{\rightarrow} \mathbf{1}$
" Failure: "Tails", "Absence", "no dinner tonight" $\boldsymbol{\rightarrow} \mathbf{0}$
- Now let X denote a variable such as:
- $X=1$ success: $P(X)=p$;
- $X=0$ failure: $P(\bar{X})=1-p$
- Define a random variable + assign a probability distribution.

Random variables and probability distribution

- A random variable $\mathrm{X}: \Omega \rightarrow \mathrm{M}$ where M is a measurable space (natural numbers, real numbers, ...)

Random variables and probability distribution

- A random variable $\mathrm{X}: \Omega \rightarrow \mathrm{M}$ where M is a measurable space (natural numbers, real numbers, ...)
- A probability distribution f is a function that assigns probability under certain constraints:

Random variables and probability distribution

- A random variable $\mathrm{X}: \Omega \rightarrow \mathrm{M}$ where M is a measurable space (natural numbers, real numbers, ...)
- A probability distribution f is a function that assigns probability under certain constraints:
(1) f specifies P for the partition of Ω made of singletons

Random variables and probability distribution

- A random variable $\mathrm{X}: \Omega \rightarrow \mathrm{M}$ where M is a measurable space (natural numbers, real numbers, ...)
- A probability distribution f is a function that assigns probability under certain constraints:
(1) f specifies P for the partition of Ω made of singletons
(2) f defines $p_{0}, p_{1}, p_{2}, \ldots, p_{n}$ such as $\sum p_{i}=1$

Random variables and probability distribution

- A random variable $\mathrm{X}: \Omega \rightarrow \mathrm{M}$ where M is a measurable space (natural numbers, real numbers, ...)
- A probability distribution f is a function that assigns probability under certain constraints:
(1) f specifies P for the partition of Ω made of singletons
(2) f defines $p_{0}, p_{1}, p_{2}, \ldots, p_{n}$ such as $\sum p_{i}=1$
" Coin P("Head") $=P(1)=p ; P(" T a i l ")=P(0)=1-p$

Random variables and probability distribution

- A random variable $\mathrm{X}: \Omega \rightarrow \mathrm{M}$ where M is a measurable space (natural numbers, real numbers, ...)
- A probability distribution f is a function that assigns probability under certain constraints:
(1) f specifies P for the partition of Ω made of singletons
(2) f defines $p_{0}, p_{1}, p_{2}, \ldots, p_{n}$ such as $\sum p_{i}=1$
" Coin P("Head") $=P(1)=p ; P(" T a i l ")=P(0)=1-p$
- Dice $P(1)=P(2)=\ldots=P(6)=1 / 6$

Independence - Intuition

SHOOT 1

Independence - Intuition - 2 ducks

SHOOT $1 \quad$ SHOOT 2

Independence - Intuition - 2 ducks

SHOOT 1
 SHOOT 2

Independence - Intuition - 1 duck

SHOOT 1
 SHOOT 2

Independence - Intuition - 1 duck

SHOOT 1
 SHOOT 2

Independence - Definition

Two events are independent iif:

- $P(A \cap B)=P(A) P(B)$

Independence - Definition

Two events are independent iif:

- $P(A \cap B)=P(A) P(B)$

Remarks:
(1) this is an assumption often implicit (notably in statistics)

Independence - Definition

Two events are independent iif:

- $P(A \cap B)=P(A) P(B)$

Remarks:
(1) this is an assumption often implicit (notably in statistics)
(2) events that may not seem independent (intuitively) may be independent according to the definition

Independence - Definition

Two events are independent iif:

- $P(A \cap B)=P(A) P(B)$

Remarks:
(1) this is an assumption often implicit (notably in statistics)
(2) events that may not seem independent (intuitively) may be independent according to the definition
(3) A and B independent then $P(A \cup B)=P(A)+P(B)-P(A) P(B)$

Let's practice 2 (15 min)

Elmer shoots 3 independent ducks with a success rate of $p=0.4$

Let's practice 2 (15 min)

Elmer shoots 3 independent ducks with a success rate of $p=0.4$
(1) Find the probability he misses the first 2 ducks and kills the last one.

Let's practice 2 (15 min)

Elmer shoots 3 independent ducks with a success rate of $p=0.4$
(1) Find the probability he misses the first 2 ducks and kills the last one.
(2) Find the probability he kills 2 ducks.

Let's practice 2 (15 min)

Elmer shoots 3 independent ducks with a success rate of $p=0.4$
(1) Find the probability he misses the first 2 ducks and kills the last one.
(2) Find the probability he kills 2 ducks.

He now shoots n independent ducks with a success rate of p
(3) Find the probability he misses the $\mathrm{n}-1$ first ducks and kills the last one

Let's practice 2 (15 min)

Elmer shoots 3 independent ducks with a success rate of $p=0.4$
(1) Find the probability he misses the first 2 ducks and kills the last one.
(2) Find the probability he kills 2 ducks.

He now shoots n independent ducks with a success rate of p
(3) Find the probability he misses the $\mathrm{n}-1$ first ducks and kills the last one
(4) Find the probability he kills k ducks.

Let's practice 2 (15 min)

Elmer shoots 3 independent ducks with a success rate of $p=0.4$
(1) Find the probability he misses the first 2 ducks and kills the last one.
(2) Find the probability he kills 2 ducks.

He now shoots n independent ducks with a success rate of p
(3) Find the probability he misses the $\mathrm{n}-1$ first ducks and kills the last one
(4) Find the probability he kills k ducks.

- bonus: solve the dice problem

Solution 2

$\mathrm{Y}=$ "number of duck Elmer killed",

Solution 2

$Y=$ "number of duck Elmer killed", $Y \in 0,1,2,3$

Solution 2

$Y=$ "number of duck Elmer killed", $Y \in 0,1,2,3$
$Z=$ "number of failure before first success"

Solution 2

$Y=$ "number of duck Elmer killed", $Y \in 0,1,2,3$
$Z=$ "number of failure before first success" $Z=0,1, \ldots, n$

Finite and countably infinite support sets

(1) Finite set: $\mathrm{X}=\{1,2, \ldots, \mathrm{n}\}$

Finite and countably infinite support sets

(1) Finite set: $X=\{1,2, \ldots, n\}$

- Rolling n dices
- presence of n species on an island
- killing k/n ducks

Finite and countably infinite support sets

(1) Finite set: $X=\{1,2, \ldots, n\}$

- Rolling n dices
- presence of n species on an island
- killing k/n ducks
(2) Countably infinite set $X=\{1,2,3, \ldots,+\infty\}$
- number of species on a given island
- number of failure before the first success
- missing n ducks before killing one

Finite and countably infinite support sets

(1) Finite set: $X=\{1,2, \ldots, n\}$

- Rolling n dices
- presence of n species on an island
- killing k/n ducks
(2) Countably infinite set $X=\{1,2,3, \ldots,+\infty\}$
- number of species on a given island
- number of failure before the first success
- missing n ducks before killing one

$$
\sum_{i}^{+\infty} P\left(X_{i}\right)=1
$$

Binomial distribution dbinom

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Binomial distribution dbinom

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Binomial distribution dbinom

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Uniform distribution

$$
P(X=k)=\frac{1}{n}
$$

Negative binomial distribution dnbinom

Poisson distribution dpois

$$
P(X=k)=\frac{\lambda^{k} e^{-\lambda}}{k!}
$$

PAUSE

pause pause pause pause Pause PAUSE

PART 2

Infinite sets

Moments
The Bayes theorem

Infinite set - where is the duck?

Infinite set - where is the duck?

Infinite set - where is the duck?

Infinite set - where is the duck?

Let X be the random values x-coordinate

Infinite set - where is the duck?

Let X be the random values x-coordinate

- values: $x \in[0,10]$

Infinite set - where is the duck?

Let X be the random values x-coordinate

- values: $x \in[0,10]$
- $P(X=x)=$?

Infinite set - where is the duck?

Let X be the random values x-coordinate

- values: $x \in[0,10]$
- $P(X=x)=$?
- $P(X \in[a, b])$ makes sense!

Infinite set - where is the duck?

Let X be the random values x-coordinate

- values: $x \in[0,10]$
- $P(X=x)=$?
- $P(X \in[a, b])$ makes sense!
- $P(X \in[0,10])=1$

Infinite set - where is the duck?

Let X be the random values X-coordinate

- values: $x \in[0,10]$
- $P(X=x)=$?
- $P(X \in[a, b])$ makes sense!
- $P(X \in[0,10])=1$
- $P(X \in[0,5])=0.5$

Infinite set - where is the duck?

Let X be the random values X-coordinate

- values: $x \in[0,10]$
- $P(X=x)=$?
- $P(X \in[a, b])$ makes sense!
- $P(X \in[0,10])=1$
- $P(X \in[0,5])=0.5$

Infinite set - where is the duck?

- $P(X=x)=\frac{1}{\infty}$

Infinite set - where is the duck?

$$
\text { - } P(X=x)=\frac{1}{\infty}=0
$$

Infinite set - where is the duck?

- $P(X=x)=\frac{1}{\infty}=0$ but. ..

Infinite set - where is the duck?

- $P(X=x)=\frac{1}{\infty}=0$ but...
$=000 \operatorname{CODOO} 00000$
We need something else!

Infinite set - probability density function (p.d.f)

f is a p.d.f iif:
(1) defined on $[\mathrm{a}, \mathrm{b}]$ (a may be $-\infty / \mathrm{b}$ may be $+\infty$)

Infinite set - probability density function (p.d.f)

f is a p.d.f iif:
(1) defined on $[\mathrm{a}, \mathrm{b}]$ (a may be $-\infty / \mathrm{b}$ may be $+\infty$)
(2) positive

Infinite set - probability density function (p.d.f)

f is a p.d.f iif:
(1) defined on $[\mathrm{a}, \mathrm{b}]$ (a may be $-\infty / \mathrm{b}$ may be $+\infty$)
(2) positive
(3) regular

Infinite set - probability density function (p.d.f)

f is a p.d.f iif:
(1) defined on $[\mathrm{a}, \mathrm{b}]$ (a may be $-\infty / \mathrm{b}$ may be $+\infty$)
(2) positive
(3) regular
(4) and:

$$
\int_{a}^{b} f(x) d x=1
$$

Infinite set - where's the duck?

$$
\forall x \in[0,10] \quad f(x)=.1 \quad\left(\mathcal{U}_{[0,10]}\right)
$$

Infinite set - where's the duck?

$$
\int_{0}^{10} f(x) d x=1
$$

Infinite set - where's the duck?

$\int_{0}^{5} f(x) d x=.5$

Probability distribution - act 2

Probability distribution function:

Probability distribution - act 2

Probability distribution function:
" probability mass function, p.m.f.: random variables with a discrete support set (or countable infinite)

Probability distribution - act 2

Probability distribution function:
" probability mass function, p.m.f.: random variables with a discrete support set (or countable infinite)

- probability density function, p.d.f.: random variables with a infinite support set

Probability distribution - act 2

- $f(x) \quad[x]$ (pmf or pdf)
- $\int f(x) d x \quad \int[x] d x$

Probability distribution - act 2

- $\mathrm{f}(\mathrm{x}) \quad[\mathrm{x}]$ (pmf or pdf)
- $\int f(x) d x \quad \int[x] d x$

Conditional probability:

- $f(x \mid y) \quad[x \mid y]$
- $f(x)=f(x \mid y) f(y)$
- $f(x)=f(x \mid y) P(y)$
- $f\left(x_{1}\right) f\left(x_{2}\right)$

Cumulative distribution function (c.d.f.)

$$
F(y)=P(X \leq y)=\int_{-\infty}^{y} f(x) d x
$$

Normal distribution - p.d.f. dnorm

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}}
$$

Lognormal distribution - c.d.f. pnorm

Lognormal distribution - p.d.f. dlnorm

$$
f(x)=\frac{1}{x \sigma \sqrt{2 \pi}} e^{\frac{-1}{2}\left(\frac{\ln (x)-\mu}{\sigma}\right)^{2}}
$$

Lognormal distribution - c.d.f. plnorm

Exponential distribution-p.d.f. dexp

$$
f(x)=\lambda e^{-\lambda x}
$$

Exponential distribution - c.d.f. pexp

Practice 3 (10 min)

- You've set up a meeting with 2 colleagues:

Practice 3 (10 min)

- You've set up a meeting with 2 colleagues:
(1) you $=$ regular behavior
(2) colleague $1=$ often late but you never really know when he'll show up
(3) colleague $2=$ regular behavior if the starting time were 30 min earlier. . .

Practice 3 (10 min)

- You've set up a meeting with 2 colleagues:
(1) you $=$ regular behavior
(2) colleague $1=$ often late but you never really know when he'll show up
(3) colleague $2=$ regular behavior if the starting time were 30 min earlier. . .
- How to model tpon arrival?

Practice 3 (10 min)

- You've set up a meeting with 2 colleagues:
(1) you $=$ regular behavior
(2) colleague 1 = often late but you never really know when he'll show up
(3) colleague $2=$ regular behavior if the starting time were 30 min earlier...
- How to model tpon arrival?
- Find the probability that you get started on time?

Practice 3 (10 min)

- You've set up a meeting with 2 colleagues:
(1) you $=$ regular behavior
(2) colleague $1=$ often late but you never really know when he'll show up
(3) colleague $2=$ regular behavior if the starting time were 30 min earlier...
- How to model tpon arrival?
- Find the probability that you get started on time?
- Find the probability that the meeting is delayed by at least half an hour?

Solution 3

1- You: $\mathcal{N}(0,1)$
2- Amael: $\mathcal{N}(.5,3)$
3- Will: $\mathcal{N}(.5, .5)$

Solution 3

(1) Starting on time
(2) Meeting delayed by at least half an hour

Dealing with joint distributions

Dealing with joint distributions

(1) $\mathrm{P}(\mathrm{X} \cap \mathrm{Y})$ or $\mathrm{P}(\mathrm{X}, \mathrm{Y})$

Dealing with joint distributions

(1) $P(X \cap Y)$ or $P(X, Y)$ if independent $P(X) P(Y)$

Dealing with joint distributions

(1) $P(X \cap Y)$ or $P(X, Y)$ if independent $P(X) P(Y)$
(2) $P(X \mid Y)$ or $P(X \mid Y)$

Dealing with joint distributions

(1) $P(X \cap Y)$ or $P(X, Y)$ if independent $P(X) P(Y)$
(2) $P(X \mid Y)$ or $P(X \mid Y)$
(3) $f(x, y)$

Dealing with joint distributions

(1) $P(X \cap Y)$ or $P(X, Y)$ if independent $P(X) P(Y)$
(2) $P(X \mid Y)$ or $P(X \mid Y)$
(3) $f(x, y)$ if independent $f(y) f(x)$

Dealing with joint distributions

(1) $P(X \cap Y)$ or $P(X, Y)$ if independent $P(X) P(Y)$
(2) $P(X \mid Y)$ or $P(X \mid Y)$
(3) $f(x, y)$ if independent $f(y) f(x)$
(4) $f(x \mid y), f(y \mid x)$

Expectation and moments

Expectation (a.k.a expected value, mean):

$$
E(X)=\int x f(x) d x
$$

Expectation and moments

Expectation (a.k.a expected value, mean):

$$
E(X)=\int x f(x) d x
$$

Variance:

$$
V(X)=\int(x-E(x))^{2} f(x) d x
$$

Expectation and moments

Expectation (a.k.a expected value, mean):

$$
E(X)=\int x f(x) d x
$$

Variance:

$$
V(X)=\int(x-E(x))^{2} f(x) d x
$$

n-th moment:

$$
E\left(X^{n}\right)=\int x^{n} f(x) d x
$$

Expectation and moments

Expectation (a.k.a expected value, mean):

$$
E(X)=\int x f(x) d x
$$

Variance:

$$
V(X)=\int(x-E(x))^{2} f(x) d x
$$

n-th moment:

$$
E\left(X^{n}\right)=\int x^{n} f(x) d x
$$

Moment-generating function (MGF) alternative speciation of the distribution.

Quantiles

Quantile a:

$$
x_{\alpha} \quad P\left(X \leq x_{\alpha}\right)=\alpha
$$

Quantiles

Quantile a :

$$
x_{\alpha} \quad P\left(X \leq x_{\alpha}\right)=\alpha
$$

Examples:

- median ($a=.5$)
- 1st and 3rd quartile ($\alpha=.25 a=.75$)
- $5 / 95$ percentile ($\alpha=.05 \alpha=.95$)

Quantiles

Quantile a :

$$
x_{\alpha} \quad P\left(X \leq x_{\alpha}\right)=\alpha
$$

Examples:

- median ($a=.5$)
- 1st and 3rd quartile ($\alpha=.25 a=.75$)
- $5 / 95$ percentile $(a=.05 \alpha=.95)$

R: qbinom, qpois, qnorm, ...

Quantiles

Kevin Cazelles - Day 1 - A few notes on the probability theory

More about expectation

$$
E(g(X))=\int g(x) f(x) d x
$$

More about expectation

$$
\begin{gathered}
E(g(X))=\int g(x) f(x) d x \\
Z=X^{2} \quad E(Z)=\int x^{2} f(x) d x
\end{gathered}
$$

More about expectation

$$
\begin{gathered}
E(g(X))=\int g(x) f(x) d x \\
Z=X^{2} \quad E(Z)=\int x^{2} f(x) d x \\
Z=\cos (X) \quad E(Z)=\int \cos (x) f(x) d x
\end{gathered}
$$

Expectation / variance

- Binomial: $\mathrm{X}: \mathcal{B}(\mathrm{n}, \mathrm{p})$

Expectation / variance

- Binomial: $\mathrm{X}: \mathcal{B}(\mathrm{n}, \mathrm{p})$

$$
\begin{gathered}
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
E(X)=\sum_{k}^{n} k P(X=k)=\sum_{k}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k} \\
E(X)=n p
\end{gathered}
$$

Expectation / variance

- Binomial: $\mathrm{X}: \mathcal{B}(\mathrm{n}, \mathrm{p})$

$$
\begin{gathered}
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
E(X)=\sum_{k}^{n} k P(X=k)=\sum_{k}^{n} k\binom{n}{k} p^{k}(1-p)^{n-k} \\
E(X)=n p \\
V(X)=n p q
\end{gathered}
$$

Example Expectation / variance

- Poisson $\mathcal{P}(\lambda): E(X)=\lambda ; \quad V(X)=\lambda$
- Binomial negative: $\mathcal{N B}(r, p): E(X)=\frac{(1-p) r}{p} ; \quad V(X)=\frac{(1-p) r}{(p)^{2}}$
- Binomial negative: $\mathcal{N B}(1, p): E(X)=\frac{(1-p)}{p} ; \quad V(X)=\frac{(1-p)}{(p)^{2}}$
- Normal $\mathcal{N}(\mu, \sigma): E(X)=\mu ; \quad V(X)=\sigma^{2}$
- Exponential $\mathcal{E}(\lambda): E(X)=\lambda ; \quad V(X)=\lambda^{2}$

Example Expectation / variance

Notation	$\mathcal{N}\left(\mu, \sigma^{2}\right)$
Parameters	$\mu \in \mathbb{R}-$ mean (location)
	$\sigma^{2}>0-$ variance (squared scale)
Support	$x \in \mathbb{R}$
PDF	$\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$
CDF	$\frac{1}{2}\left[1+\operatorname{erf}\left(\frac{x-\mu}{\sigma \sqrt{2}}\right)\right]$
Quantile	$\mu+\sigma \sqrt{2} \operatorname{erf}^{-1}(2 F-1)$
Mean	μ
Median	μ
Mode	μ
Variance	σ^{2}
Skewness	0
Ex. kurtosis	0

Figure 2: Normal distribution's properties on Wikipedia

Let's practice 4 (15 min)

Elmer and the frightening question!

Let's practice 4 (15 min)

Elmer and the frightening question!

- Elmer's success rate is p

Let's practice 4 (15 min)

Elmer and the frightening question!

- Elmer's success rate is p
- a bullet is $3 \$$

Let's practice 4 (15 min)

Elmer and the frightening question!

- Elmer's success rate is p
- a bullet is $3 \$$
- a duck of the same quality is $60 \$$

Let's practice 4 (15 min)

Elmer and the frightening question!

- Elmer's success rate is p
- a bullet is $3 \$$
- a duck of the same quality is $60 \$$
- "Should Elmer better stop hunting?"

Let's practice 4 (15 min)

Elmer and the frightening question!

- Elmer's success rate is p
- a bullet is $3 \$$
- a duck of the same quality is $60 \$$
" "Should Elmer better stop hunting?"
- Find $p_{\text {sh }}$ the success rate below which Elmer should better stay at home?

Solution 4

Independence act 2

SHOOT 1 SHOOT 2

Independence act 2

Let's A and B be two events, the conditional probability $P(A \mid B)$ is defined as:

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Independence act 2

Let's A and B be two events, the conditional probability $P(A \mid B)$ is defined as:

$$
\begin{gathered}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \\
P\left(X_{1}=1 \mid X_{2}=1\right)=\frac{P\left(X_{1}=1 \cap X_{2}=1\right)}{P\left(X_{2}=1\right)}
\end{gathered}
$$

Independence act 2

Let's A and B be two events, the conditional probability $P(A \mid B)$ is defined as:

$$
\begin{gathered}
P(A \mid B)=\frac{P(A \cap B)}{P(B)} \\
P\left(X_{1}=1 \mid X_{2}=1\right)=\frac{P\left(X_{1}=1 \cap X_{2}=1\right)}{P\left(X_{2}=1\right)}
\end{gathered}
$$

consequently:

$$
P(A \cap B)=P(A \mid B) P(B)
$$

Independence act 2

Independence:

$$
P(A \mid B)=P(A)
$$

Independence act 2

Independence:

$$
P(A \mid B)=P(A)
$$

$$
P(A \cap B)=P(A \mid B) P(B)
$$

Independence act 2

Bayes theorem

Bayes theorem

$$
P(A \cap B)=P(B \cap A)
$$

Bayes theorem

$$
\begin{gathered}
P(A \cap B)=P(B \cap A) \\
P(A \mid B) P(B)=P(B \mid A) P(A)
\end{gathered}
$$

Bayes theorem

$$
\begin{gathered}
P(A \cap B)=P(B \cap A) \\
P(A \mid B) P(B)=P(B \mid A) P(A) \\
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
\end{gathered}
$$

Bayes theorem

"Given the number of times in which an unknown event has happened and failed: Required the chance that the probability of its (specific event) happening in a single trial lies somewhere between any two degrees of probability that can be named."

Bayes theorem

"Given the number of times in which an unknown event has happened and failed: Required the chance that the probability of its (specific event) happening in a single trial lies somewhere between any two degrees of probability that can be named."

Proposition 3:

"The probability that two subsequent events will both happen is a ratio compounded of the probability of the 1 st, and the probability of the $2 n d$ on supposition the 1 st happens."

Bayes theorem

"Given the number of times in which an unknown event has happened and failed: Required the chance that the probability of its (specific event) happening in a single trial lies somewhere between any two degrees of probability that can be named."

Proposition 3:

"The probability that two subsequent events will both happen is a ratio compounded of the probability of the 1 st, and the probability of the 2 nd on supposition the 1st happens."
An Essay Towards Solving a Problem in the Doctrine of Chances

Bayes theorem

Proposition 5:

"If there be two subsequent events, the probability of the 2nd b / N and the probability both together P / N, and it being first discovered that the 2nd event has happened, from hence I guess that the 1st event has also happened, the probability I am in the right is $P / b^{\prime \prime}$

Bayes theorem

Proposition 5:

"If there be two subsequent events, the probability of the 2nd b / N and the probability both together P / N, and it being first discovered that the 2nd event has happened, from hence I guess that the 1st event has also happened, the probability I am in the right is $P / b^{\prime \prime}$

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- information

Bayes theorem

Proposition 5:

"If there be two subsequent events, the probability of the 2nd b / N and the probability both together P / N, and it being first discovered that the 2nd event has happened, from hence I guess that the 1st event has also happened, the probability I am in the right is P / b "

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- information
- inferences

Bayes theorem

Proposition 5:

"If there be two subsequent events, the probability of the 2nd b / N and the probability both together P / N, and it being first discovered that the 2nd event has happened, from hence I guess that the 1st event has also happened, the probability I am in the right is $P / b^{\prime \prime}$

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

- information
- inferences
- cause/consequence

Bayes theorem

Bayes theorem

$C_{i}(i \in 1, \ldots, n)$ is a partition of Ω, let's use the law of total probability

Bayes theorem

$C_{i}(i \in 1, \ldots, n)$ is a partition of Ω, let's use the law of total probability

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{\sum P\left(B \cap C_{i}\right)}
$$

Bayes theorem

$C_{i}(i \in 1, \ldots, n)$ is a partition of Ω, let's use the law of total probability

$$
\begin{array}{r}
P(A \mid B)=\frac{P(B \mid A) P(A)}{\sum P\left(B \cap C_{i}\right)} \\
P(A \mid B)=\frac{P(B \mid A) P(A)}{\sum P\left(B \mid C_{i}\right) P\left(C_{i}\right)}
\end{array}
$$

Bayes theorem

$C_{i}(i \in 1, \ldots, n)$ is a partition of Ω, let's use the law of total probability

$$
\begin{aligned}
& P(A \mid B)=\frac{P(B \mid A) P(A)}{\sum P\left(B \cap C_{i}\right)} \\
& P(A \mid B)=\frac{P(B \mid A) P(A)}{\sum P\left(B \mid C_{i}\right) P\left(C_{i}\right)} \\
& f(A \mid B)=\frac{f(B \mid A) f(A)}{\int f(b \mid c) f(c) d c}
\end{aligned}
$$

Practice 5 - Are you infected? (20 min)

- Prevalence is π (0.01)

Practice 5 - Are you infected? (20 min)

- Prevalence is π (0.01)
- test to determine whether or not you are infected
- error type I is $\alpha=.025$
- error type II $\beta=.05$

Practice 5 - Are you infected? (20 min)

- Prevalence is π (0.01)
- test to determine whether or not you are infected
- error type I is $\alpha=.025$
- error type II $\beta=.05$
- You take the test, it is positive, are you infected?

Practice 5 - Are you infected? (20 min)

- Prevalence is π (0.01)
- test to determine whether or not you are infected
- error type I is $\alpha=.025$
- error type II $\beta=.05$
- You take the test, it is positive, are you infected?
- You take the test, it is negative, are you infected?

Practice 5 - Are you infected? (20 min)

- Prevalence is π (0.01)
- test to determine whether or not you are infected
- error type I is $\alpha=.025$
- error type II $\beta=.05$
- You take the test, it is positive, are you infected?
- You take the test, it is negative, are you infected?
- bonus: build a function to answer the questions above for any parameters' value.

Solution 5

Let's use 2 random variables:

- $\mathrm{X}=1$ ("sick"); $\mathrm{X}=0$ ("sane")
" $\mathrm{T}=1$ ("test positive"); $\mathrm{T}=0$ ("test negative")

LUNCH

lunch lunch Lunch LUNCH LUNCH

PART 3

Let's practice more

Practice 6 - Elmer is back (25 min)

- Elmer's precision decreases as distance increases

Practice 6 - Elmer is back (25 min)

- Elmer's precision decreases as distance increases
- Ducks escape when Elmer gets too close

Practice 6 - Elmer is back (25 min)

- Elmer's precision decreases as distance increases
- Ducks escape when Elmer gets too close
(1) Model $\mathrm{P}(\mathrm{X}=1 \mid \mathrm{D}=\mathrm{d})$

Practice 6 - Elmer is back (25 min)

- Elmer's precision decreases as distance increases
- Ducks escape when Elmer gets too close
(1) Model $\mathrm{P}(\mathrm{X}=1 \mid \mathrm{D}=\mathrm{d})$
(2) Find the effective rate of success p

Practice 6 - Elmer is back (25 min)

- Elmer's precision decreases as distance increases
- Ducks escape when Elmer gets too close
(1) Model $\mathrm{P}(\mathrm{X}=1 \mid \mathrm{D}=\mathrm{d})$
(2) Find the effective rate of success p (how to model $P(D=d)$)

Practice 6 - Elmer is back (25 min)

- Elmer's precision decreases as distance increases
- Ducks escape when Elmer gets too close
(1) Model P(X=1|D = d)
(2) Find the effective rate of success p (how to model $P(D=d)$)
(3) Elmer brings 10 bullets, what's the probability he'll have a nice diner?

Practice 6 - Elmer is back (25 min)

- Elmer's precision decreases as distance increases
- Ducks escape when Elmer gets too close
(1) Model P(X=1|D = d)
(2) Find the effective rate of success p (how to model $P(D=d)$)
(3) Elmer brings 10 bullets, what's the probability he'll have a nice diner?
- bonus: solve the division problem

Solution 6

Practice 7 - Elmer... the truth (25 min)

val1.csv (or val1.Rds) are the results of 1000 shoots Elmer took.
(1) Create a function to compute the probability obtaining such results for any p.

Practice 7 - Elmer... the truth (25 min)

val1.csv (or val1.Rds) are the results of 1000 shoots Elmer took.
(1) Create a function to compute the probability obtaining such results for any p.
(2) Deduce the probability of having these results.

Practice 7 - Elmer... the truth (25 min)

val1.csv (or val1.Rds) are the results of 1000 shoots Elmer took.
(1) Create a function to compute the probability obtaining such results for any p.
(2) Deduce the probability of having these results.
(3) Create a function that computes $P(p \mid X)$ for any value of p.

Practice 7 - Elmer... the truth (25 min)

val1.csv (or val1.Rds) are the results of 1000 shoots Elmer took.
(1) Create a function to compute the probability obtaining such results for any p.
(2) Deduce the probability of having these results.
(3) Create a function that computes $P(p \mid X)$ for any value of p.
(4) We have a new set of data val2.csv or val2.Rds, what should you do?

Practice 7 - Elmer... the truth (25 min)

val1.csv (or val1.Rds) are the results of 1000 shoots Elmer took.
(1) Create a function to compute the probability obtaining such results for any p.
(2) Deduce the probability of having these results.
(3) Create a function that computes $P(p \mid X)$ for any value of p.
(4) We have a new set of data val2.csv or val2.Rds, what should you do?
(5) bonus: 1-3 including the distance (see val3.csv or val3. Rds)
(6) bonus 2: Answer Bayes' original question

Solution 7

Let's step back

What do we do when we do statistics? (simple case)

Let's step back

What do we do when we do statistics? (simple case)

- observations: $x_{1}, x_{2}, \ldots, x_{n}$

Let's step back

What do we do when we do statistics? (simple case)

- observations: $x_{1}, x_{2}, \ldots, x_{n}$
- Hypothesis: outcomes of random variables independent and identically distributed (i.i.d.) X_{i}

Let's step back

What do we do when we do statistics? (simple case)

- observations: $x_{1}, x_{2}, \ldots, x_{n}$
- Hypothesis: outcomes of random variables independent and identically distributed (i.i.d.) X_{i}
- The distribution is given by θ (i.e. $\mathcal{N}(\theta)$ where $\theta=(\mu, \sigma)$)

Let's step back

What do we do when we do statistics? (simple case)

- observations: $x_{1}, x_{2}, \ldots, x_{n}$
- Hypothesis: outcomes of random variables independent and identically distributed (i.i.d.) X_{i}
- The distribution is given by $\theta($ i.e. $\mathcal{N}(\theta)$ where $\theta=(\mu, \sigma))$
- We try to find out θ 's value(s) given x_{i} : inference

Let's take a step back

- To do so, we build estimators
- To do so, we build estimators
- Normal: $\theta=(\mu, \sigma)$
- $\hat{\mu}=\frac{1}{n} \sum_{i}^{n} x_{i}$
- To do so, we build estimators
- Normal: $\theta=(\mu, \sigma)$
- $\hat{\mu}=\frac{1}{n} \sum_{i}^{n} x_{i}$
- $\hat{\sigma}=\frac{1}{n} \sum_{i}^{n}\left(x_{i}-\mu\right)^{2}$
- To do so, we build estimators
- Normal: $\theta=(\mu, \sigma)$
- $\hat{\mu}=\frac{1}{n} \sum_{i}^{n} x_{i}$
- $\hat{\sigma}=\frac{1}{n} \sum_{i}^{n}\left(x_{i}-\mu\right)^{2}$
- $\hat{\sigma}=\frac{1}{n-1} \sum_{i}^{n}\left(x_{i}-\hat{\mu}\right)^{2}$

Let's take a step back

- To do so, we build estimators
- Normal: $\theta=(\mu, \sigma)$
- $\hat{\mu}=\frac{1}{n} \sum_{i}^{n} x_{i}$
- $\hat{\sigma}=\frac{1}{n} \sum_{i}^{n}\left(x_{i}-\mu\right)^{2}$
- $\hat{\sigma}=\frac{1}{n-1} \sum_{i}^{n}\left(x_{i}-\hat{\mu}\right)^{2}$
- Then we assess the goodness of our estimation: IC / tests

Let's take a step back

- To do so, we build estimators
- Normal: $\theta=(\mu, \sigma)$
- $\hat{\mu}=\frac{1}{n} \sum_{i}^{n} x_{i}$
- $\hat{\sigma}=\frac{1}{n} \sum_{i}^{n}\left(x_{i}-\mu\right)^{2}$
- $\hat{\sigma}=\frac{1}{n-1} \sum_{i}^{n}\left(x_{i}-\hat{\mu}\right)^{2}$
- Then we assess the goodness of our estimation: IC / tests
- Bayesian framework offers few other possibilities.

Why normal, why?

Why normal, why?

Central limit theorem:

$$
x_{i}, i \in 1,2, \ldots, n
$$

i.i.d. $\mathcal{L}(\theta)$,

$$
\frac{x_{i}-\mu}{\sigma} \rightarrow N(\mu, \sigma)
$$

Why normal, why?

Central limit theorem:

$$
x_{i}, i \in 1,2, \ldots, n
$$

i.i.d. $\mathcal{L}(\theta)$,

$$
\frac{x_{i}-\mu}{\sigma} \rightarrow N(\mu, \sigma)
$$

Poincaré:
"Tout le mode croit à la loi normale : les physiciens parcequ'ils pensent que les mathématiciens l'ont démontrée et les mathématiciens parcequ'ils croient qu'elle a été vérifiée par les physiciens."

To be continued

